Modelarski Silnik Odrzutowy Cena | Modelarstwo Silniki Odrzutowe 29722 명이 이 답변을 좋아했습니다 January 16, 2023 by Nguyễn Trần Trung Quân 당신은 주제를 찾고 있습니까 “ modelarski silnik odrzutowy cena – Modelarstwo silniki odrzutowe “?
Please add exception to AdBlock for If you watch the ads, you support portal and users. Thank you very much for proposing a new subject! After verifying you will receive points! mar-cin-k 06 Oct 2014 17:43 3576 #1 06 Oct 2014 17:43 mar-cin-k mar-cin-k Level 10 #1 06 Oct 2014 17:43 Witam. Czytalem i ogladalem filmy o tym jak dziala silnik odrzutowy w samolotach ale jednej rzeczy nie moge zrozumiec. Gdy następuje wybuch w komorze spalania, ciśnienie i siły rozchodzą się równomiernie we wszystkich kierunkach, prawda? Zatem zarówno ciśnienie oddziaływujące na sprężarkę jest takie samo jak to oddziaływujące na turbinę. Wynikałoby z tego zatem, że równe siły przyłożone w przeciwnych kierunkach powinny się równoważyć i wał nie powinien się obracać. No ale tak nie jest, napewno gdzieś jest błąd w moim myśleniu ale nie wiem gdzie? Dlaczego po wybuchu następuje odrzut tylko w jedna stronę? Przecież takie same siły działają we wszystkich kierunkach na wszystkie elementy w komorze spalania a mimo to łopatki sprężarki i turbiny obracaja się w jednym tylko kierunku. Załączam obrazek w którym wyjaśniłem o co mi chodzi. To view the material on this forum you must be logged in. Z góry dziekuję za pomoc #2 06 Oct 2014 18:18 robokop robokop VIP Meritorious for #2 06 Oct 2014 18:18 To co narysowałeś, to nie jest silnik odrzutowy, tylko turboodrzutowy. Działa to w ten sposób, że rozpędzone silnikiem elektrycznym wirniki wtłaczają powietrze do komory spalania - tam zostaje wtryśnięte paliwo, następuje zapłon i tu właśnie jest twoja zagadka - rozprężające się gazy spalinowe trafiają w łopatki gorącej strony turbiny, sprzężone wałem z z wirnikami strony zimnej, tłoczącej powietrze. Gazy te napędzają wirnik gorącej strony, trafiając do dyszy wylotowej i dając "ciąg", czyli odrzut. Czemu nie pójdą w obie strony? A temu, że łopatki sprężarki po stronie zimnej, czyli ładującej są wyprofilowane w drugą stronę, są rozpędzone i tłoczą powietrze, przeciwdziałając sile rozprężających się gazów spalinowych - działa to jak zawór jednokierunkowy silnika pulsacyjnego. #3 28 Oct 2014 18:54 mar-cin-k mar-cin-k Level 10 #3 28 Oct 2014 18:54 robokop wrote: To co narysowałeś, to nie jest silnik odrzutowy, tylko turboodrzutowy. Działa to w ten sposób, że rozpędzone silnikiem elektrycznym wirniki wtłaczają powietrze do komory spalania - tam zostaje wtryśnięte paliwo, następuje zapłon i tu właśnie jest twoja zagadka - rozprężające się gazy spalinowe trafiają w łopatki gorącej strony turbiny, sprzężone wałem z z wirnikami strony zimnej, tłoczącej powietrze. Gazy te napędzają wirnik gorącej strony, trafiając do dyszy wylotowej i dając "ciąg", czyli odrzut. Czemu nie pójdą w obie strony? A temu, że łopatki sprężarki po stronie zimnej, czyli ładującej są wyprofilowane w drugą stronę, są rozpędzone i tłoczą powietrze, przeciwdziałając sile rozprężających się gazów spalinowych - działa to jak zawór jednokierunkowy silnika pulsacyjnego. Dzieki za odpowiedz ale niestety nadal nie rozumie... Na zalaczonym obrazku przedstawiam moj problem. Skoro siła wybuchu pcha łopatki w jednym kierunku to dlaczego krecą się one w drugim? pozdrawiam To view the material on this forum you must be logged in. #4 28 Oct 2014 20:08 _jta_ _jta_ Electronics specialist #4 28 Oct 2014 20:08 Na sprężarce ciśnienie wzrasta, na turbinie maleje. Rzecz w tym, że przez turbinę przepływa go więcej (zwłaszcza objętościowo, a to jest istotne, jakkolwiek wagowo też), więc przy takiej samej różnicy ciśnień praca wykonana przez powietrze napędzające turbinę jest większa, niż praca, jaką wykonuje sprężarka - nadwyżka wystarcza na pokonanie oporów (przepływu i ruchu turbiny i sprężarki) i napędzanie przepływu powietrza (i to jest potrzebne, żeby silnik dawał ciąg - ile popchnie on powietrze do tyłu, tyle sam jest popychany do przodu). #5 29 Oct 2014 01:23 mar-cin-k mar-cin-k Level 10 #5 29 Oct 2014 01:23 _jta_ wrote: Na sprężarce ciśnienie wzrasta, na turbinie maleje. Rzecz w tym, że przez turbinę przepływa go więcej (zwłaszcza objętościowo, a to jest istotne, jakkolwiek wagowo też), więc przy takiej samej różnicy ciśnień praca wykonana przez powietrze napędzające turbinę jest większa, niż praca, jaką wykonuje sprężarka - nadwyżka wystarcza na pokonanie oporów (przepływu i ruchu turbiny i sprężarki) i napędzanie przepływu powietrza (i to jest potrzebne, żeby silnik dawał ciąg - ile popchnie on powietrze do tyłu, tyle sam jest popychany do przodu). Dzięki za odpowiedź ale niestety nadal nie rozumię dlaczego łopatki turbiny kręcą się właśnie w tą stronę a nie w drugą. No chyba że coś źle narysowałem na powyższym obrazku? Czy obrazek ten przedstawia właściwy kąt nachylenia łopatek i ich obrót? #6 29 Oct 2014 02:07 _jta_ _jta_ Electronics specialist #6 29 Oct 2014 02:07 Pewnie sprężarka ma mniejsze nachylenie łopatek (na rysunku są one bliżej pionu), niż turbina - takie samo ciśnienie daje większy moment siły na turbinie, niż na sprężarce. #7 29 Oct 2014 10:22 pawem1 pawem1 Level 25 #7 29 Oct 2014 10:22 Bo widocznie jest źle narysowany obrazek albo jest nienarysowana przekładnia zmieniająca kierunek obrotów, zobacz tu są poprawnie łopatki i kierunek obrotu To view the material on this forum you must be logged in. To view the material on this forum you must be logged in. #8 30 Oct 2014 22:49 Duduś74 Duduś74 Moderator of HydePark #8 30 Oct 2014 22:49 mar-cin-k wrote: Skoro siła wybuchu pcha łopatki w jednym kierunku to dlaczego krecą się one w drugim? Tam nie ma żadnego wybuchu, paliwo podawane jest z dysz w stronę wylotu i jest spalane w sposób ciągły. #9 01 Nov 2014 02:49 mar-cin-k mar-cin-k Level 10 #9 01 Nov 2014 02:49 pawem1 wrote: Bo widocznie jest źle narysowany obrazek albo jest nienarysowana przekładnia zmieniająca kierunek obrotów, zobacz tu są poprawnie łopatki i kierunek obrotu To view the material on this forum you must be logged in. To view the material on this forum you must be logged in. No to teraz kolego mnie zupełnie zaskoczyłeś tym zdjęciem ( Ile tam jest przegród w środku... ile otworów... Nie sądziłem że to tak wygląda. Myślałem że to jest prostsza konstrukcja. Teraz chyba już rozumię dlaczego ciśnienie nie cofa się do sprężarki... bo właśnie te przegrody oddzielają komorę spalania od łopatek sprężarki. Dla spalającego się paliwa najłatwiejszą droga ucieczki jest kierunek w stronę turbiny. Po prostu rozchodzące się ciśnienie po spalaniu nie może wydostać się w stronę sprężarki ponieważ: - po pierwsze jest ono blokowane przez ścianki komory spalania - po drugie małymi otworami wciskane jest świeże powietrze, które również nie umożliwia wydostania się ciśnienia w kierunku sprężarki Narysowałem to na tym obrazku. Powiedzcie mi czy dobrze. To view the material on this forum you must be logged in. Jest jeszcze jedna rzecz która mnie dziwi. Dlaczego otwory którymi wchodzi świeże powietrze skierowane są w odwrotną stronę niż przepływ powietrza? To view the material on this forum you must be logged in. #10 01 Nov 2014 03:53 januszx3 januszx3 Level 31 #10 01 Nov 2014 03:53 Początki silnika odrzutowego wyglądały podobnie jak na zał. ilustracji: To view the material on this forum you must be logged in. Pociski V1 z takim napędem, wydawały charakterystyczny dźwięk (pykały). Turbina ze sprężarką, zamiast zaworów, to dopiero późniejszy kolejny krok w technice. #11 01 Nov 2014 11:51 Michelson Michelson Level 25 #11 01 Nov 2014 11:51 Quote: Dlaczego otwory którymi wchodzi świeże powietrze skierowane są w odwrotną stronę niż przepływ powietrza? Moim zdaniem po to, aby poprzez zawirowania, w komorze spalania wytworzyć mieszankę paliwowo-powietrzną. #12 01 Nov 2014 13:05 markoz7874 markoz7874 Level 31 #12 01 Nov 2014 13:05 mar-cin-k wrote: .. Teraz chyba już rozumię dlaczego ciśnienie nie cofa się do sprężarki... Czasami się cofa - mamy wtedy do czynienia ze szkodliwym zjawiskiem o nazwie "pompaż" #13 02 Nov 2014 12:23 TDS420 TDS420 Level 11 #13 02 Nov 2014 12:23 Ogólnie silnik odrzutowy działa zgodnie z nazwą na zasadzie odrzutu - dokładnie tak jak nadmuchany balon zostaje odrzucony (ściska go ze wszystkich stron ciśnienie atmosferyczne). Ciąg silnika w większości nie pochodzi z wału silnika. Jak ktoś nie wierzy, to polecam ten kanał YouTube (w którymś odcinku było takie pytanie i gość to tłumaczył): #14 04 Nov 2014 03:05 mar-cin-k mar-cin-k Level 10 #14 04 Nov 2014 03:05 No to mogę temat uznać za zakończony. Już teraz wszystko rozumię. WIELKIE dzięki dla wszystkich za pomoc!!!!Dla naszych średniowiecznych przodków jadący samochód mógłby wydać się tworem magicznym. Zasada działania silnika spalinowego nie ma jednak nic wspólnego z samochodach najczęściej wykorzystywany jest spalinowy silnik czterosuwowy o zapłonie iskrowym – czyli taki, którego tłok wykonuje cztery ruchy, a reakcja spalania paliwa jest wywoływana przez tłoka to tzw. cykl Otta, którego nazwa pochodzi nazwiska wynalazcy Nikolausa Otto. To one sprawiają, że samochód się porusza. Na czym polega ten proces? W skrócie: paliwo zostaje pobrane do cylindra i spalone. Powstała przy tym energia zostaje przełożona na układ napędowy, a spaliny są wydalane. Wszystko to odbywa się z przeogromną prędkością i w stosunkowo niewielkiej skali. Takie wytłumaczenie nam jednak nie wystarcza, toteż nieco bardziej zagłębmy się w napędzany jest samochód?Pierwszy z czterech ruchów tłoka to ssanie. Tłok porusza się w głąb hermetycznego cylindra, zasysając do niego mieszankę powietrza z paliwem. Mieszanka doprowadzana jest do cylindra dzięki układowi wtryskowemu, również wykorzystującemu niewielki tłok. Przepycha on drobne porcje paliwa przez wąską dyszę, w wyniku czego do cylindra trafiają one w postaci ruch to sprężanie. Tłok, obecnie głęboko w cylindrze, zaczyna poruszać w kierunku zewnętrznym, co sprawia, że pobrane paliwo zostaje „ściśnięte”. Wówczas świeca zapłonowa generuje iskrę i następuje eksplozja ruch to praca. Eksplozja odpycha tłok z powrotem do wnętrza cylindra. Jako że tłok łączy się z wałem korbowym za pomocą specjalnie ukształtowanego korbowodu, jego praca powoduje obrót wału. Mówiąc po ludzku: odepchnięty tłok porusza wał, który zaczyna się kręcić. Tym samym wytworzona przez eksplozję energia może zostać przeniesiona do układu napędowego, a kierowca za pomocą sprzęgła i skrzyni biegów może kontrolować ruch to wydech. Na końcu cyklu Otta otwarty zostaje zawór, przez który pozostałe po spalaniu gazy są wyprowadzane z cylindra. Tłok wówczas znów porusza się w kierunku zewnętrznym. Dodajmy, że za doprowadzanie powietrza i odprowadzanie spalin na zewnątrz odpowiada nie sam cylinder, ale układ rozrządu, czyli – w uproszczeniu – pasek zębaty, koło zębate lub wałek z wystającymi elementami, który obraca się i w odpowiednich chwilach otwiera lub zamyka właściwe zakończeniu czwartego ruchu proces się powtarza. Kolejna porcja mieszanki jest zasysana, sprężana, eksplozja powoduje odepchnięcie tłoka i poruszenie wałem korbowym, resztki gazów są odprowadzane. I tak dalej, dopóki nie dojedziemy do celu. Wszystko to odbywa się niezwykle szybko – wał obraca się od kilkunastu do stu razy na zdjęć: © Domena publicznaCo jeszcze jest w silniku?Cylindry, wał korbowy, wałek rozrządu – wszystko to umieszczone jest w kadłubie wykonanym z żeliwa. Warto jeszcze wspomnieć o kole zamachowym. Co prawda wałem korbowym porusza tylko jeden ruch tłoka (praca), ale sam tłok wykonuje ich cztery. Szczególnie problematyczne jest sprężanie, które wymaga dużej energii – co przekłada się na zmniejszenie prędkości, z jaką obraca się wał. Aby pracował równo, stosuje się ważące ok. 10 kg koło zamachowe, które siłą rozpędu podtrzymuje prędkość obrotową pracy silnik się rozgrzewa, toteż wykorzystywany jest płyn chłodniczy. Chłodziwo płynie różnymi kanałami. O tym, do których trafia, decyduje termostat, czyli urządzenie, które pod wpływem temperatury otwiera lub zamyka daną ścieżkę. Z kolei olej silnikowy jest potrzebny po to, aby zmniejszyć tarcie, powstające przy ruchu licznych elementów. Przy okazji pochłania część ciepła generowanego przez silnik, podobnie jak płyn zdjęć: © Imotorhead64, Wikimedia CommonsPrototypowy silnik DieslaMożna by mówić jeszcze o takich elementach, jak głowica silnika, miska i pompa olejowa; można wspomnieć o szczegółach konstrukcji mechanizmu korbowego, czy o fakcie, że precyzyjne sterowanie całym tym złożonym mechanizmem obecnie odbywa się z wykorzystaniem komputera… ale to już szczegóły, które nie są zbyt ciekawe ani potrzebne do zrozumienia zasady działania benzynowy silnik spalinowy różni się od diesla?Wynalazek Rudolfa Diesla to silnik wysokoprężny, który nie wykorzystuje świecy zapłonowej do wywołania iskry zapalającej dawkę paliwa. Więcej: on wcale nie wykorzystuje iskry. Zapłon następuje w nim samoczynnie. Paliwo zapala się głównie w wyniku wysokiego sprężenia mieszanki – znacznie wyższego niż w silniku benzynowym – a po części także dzięki świecy żarowej, która działa jak silnik jest lepszy? Każdy ma wady i zalety. Diesel zużywa mniej paliwa i jest bardziej odporny na wilgoć, ale konstrukcja jest cięższa, głośniejsza i droższa w produkcji. Co więcej, choć silnik wysokoprężny spala mniej paliwa, generowane przez niego spaliny są około dwudziestokrotnie bardziej toksyczne.
W tym odcinku znajdziecie informacje o silnikach rakietowych hybrydowych.Zasubskrybuj po więcej takich filmów!👉MEDIA:Faecebook: https://www.facebook.com/B-SDlaczego silnik odrzutowy, a nie śmigłowy?Silnik odrzutowy przewyższa silnik śmigłowe z kilku powodów. Obracające się śmigło, dochodząc do swej maksymalnej prędkości, blisko prędkości dźwięku dla jego końcówki, mierzy się z coraz większym oporem i siłami i przez co, zaczyna coraz bardziej hałasować i traci na efektywności. Stąd samoloty śmigłowe zazwyczaj latają z prędkością Mach 0, silniki odrzutowe są znacznie bardziej efektywne pod względem zużywanego paliwa na kilogram przewożonego ładunku, co w przypadku przewozów pasażerskich i towarowych ma niebagatelne, a wręcz kluczowe znaczenie. Koniec końców są również niezawodne i wymagają mniejszych prac obsługowych. Pozwalają nam też latać szybciej i wyżej, a w lotnictwie szybciej i wyżej zazwyczaj równa się też oczywiście nie jest tak, że silniki turbośmigłowe są nieprzydatne. Samoloty wyposażone w takie jednostki napędowe lepiej sprawdzają się przy niższych prędkościach i na niższych wysokościach. Jeśli chcemy lecieć daleko i wysoko to silnik odrzutowy jest bezkonkurencyjny. To właśnie między innymi dlatego samoloty pasażerskie stosunkowo szybko nabierają wysokości, by potem spokojnie sunąć po niebie w idealnych dla siebie warunkach. Silniki śmigłowe nadal czują się dobrze w określonych zastosowaniach i póki co nie zanosi się by miały oddać pola silnikom odrzutowym. Źródło: USAF Silnik odrzutowy. Krótki rys historycznyMożna by powiedzieć, że silnik odrzutowy jest stary jak świat, no prawie tak stary, a przynajmniej tak stary, jak nasza era. Już w roku 60 Heron z Aleksandrii skonstruował prostą maszynę zwaną aeolipile. Zanim udało się z tej koncepcji wystrugać prawdziwą maszynę odrzutową, musiało minąć niemal 2000 lat. Trochę czasu nam zatem zajęło dopracowanie i praktyczne zastosowanie tej końców to Niemcom przypadła w udziale palma pierwszeństwa zbudowania i oblatania pierwszego na świecie samolotu odrzutowego. Był nim przetestowany w 1939 roku Heinkel He 178. Kilka lat później, w roku 1944 Niemcy rozpoczęli masowa produkcje silników Jumo 004 zastosowanych w pierwszym bojowym myśliwcu, którym był Messerschmitt Me kolei pierwszym seryjnym cywilnym samolotem pasażerskim był brytyjski De Havilland Comet 1 zabierający na pokład 36 pasażerów. Prędkość przelotowa samolotu dochodziła do 800 kilometrów na godzinę, a w dziewiczy lot komercyjny maszyna wyleciała 2 czerwca 1949 roku. To tyle, jeśli idzie o krótką historię silników odrzutowych. Przejdźmy do konkretów. Silnik odrzutowy składa się z kilku stałych elementów. Są nimi od prawej: wentylator, sekcja sprężania, komora spalania, sekcja turbin i stożek wylotowy. Źródło: USAF / Joshua J. Seybert Jak działa silnik odrzutowyZasada działania silnika odrzutowego jest stosunkowo prosta. Wydaje się nawet, że jest nieco prostsza od silników spalinowych montowanych w samochodach, w których wyróżniamy suwy ssania, sprężania, pracy i wydechu. Tutaj mamy do czynienia z zasadą działania tożsamą z turbinami gazowymi, które montuje się też w czołgach Abrams M1A2 SEPv3, kupowanych przez maszyneria działa w jednej osi i składa się z obracających się wokół niej elementów. Można zatem powiedzieć, że etapy znane z silnika spalinowego zostały rozłożone na ciąg czynności realizowany w sekwencji i w jednej zatem powietrze wpada do silnika odrzutowego, następnie jest sprężane, czyli można powiedzieć, że rośnie jego kaloryczność. Zwiększa się ilość tlenu w jednostce objętości i działa to podobnie jak turbo lub kompresor w przygotowane powietrze spotyka się z wtryskiwaczami paliwa i iskrą, dochodzi do zapłonu i gorące gazy ulatują, zahaczając po drodze o turbiny, które są połączone z wirnikami kompresującymi na przodzie, napędzając samym końcu układu w silnikach wojskowych montowane są jeszcze tak zwane dopalacze. Dzięki dopalaniu samoloty mogą przekroczyć barierę dźwięku, choć najlepsze myśliwce na świecie robią to nawet bez dopalania. Silnik odrzutowy wyposażony w dopalacze pozwala z łatwością przekroczyć prędkość dźwięku. Źródło: USAF / Airman 1st Class Rhonda Smith Silnik dwuprzepływowy, czyli tanie latanieI tak oto w skrócie działa silnik odrzutowy. Oczywiście są różne warianty silników odrzutowych. Warto wspomnieć zwłaszcza o jednym z nich, czyli o najpopularniejszym obecnie silniku dwuprzepływowym, który wyparł jednostki jendoprzepływowe. Dlaczego jest on taki ważny?To właśnie silnik odrzutowy o dużej dwuprzepływowości sprawia, że możemy latać za grosze. A co oznacza ta cała dwuprzepływowość? W skrócie oznacza, że na przedzie silnika montowany jest wielki wentylator napędzany przez jedną z turbin znajdujących się w tylnej części silnika z tyłu. Wentylator ten przypomina wręcz ogromne część powietrza nie trafia w ogóle na sprężanie, spalanie i turbiny, tylko opływa rdzeń silnika i wypada z tyłu. Stąd taki wentylator można porównać do śmigła. Dzięki takiej konstrukcji osiągamy niezwykle oszczędne silniki pozwalające przewozić pasażerów i towary za silnikach wojskowych dwuprzepływowość wykorzystywana może być na przykład do chłodzenia całego układu, a przez jakiś czas mówiło się nawet o trójprzepływowości dla projektowanych nowych silników dla F-35 Lightning II. Trzeci strumień powietrza pozwoliłby zwiększyć efektywność silnika w każdym zakresie jego pracy. Budowa silnika odrzutowegoOmawiając działanie silnika odrzutowego, siłą rzeczy zahaczyliśmy już nieco o jego budowę. W tym akapicie możemy przyjrzeć się jej nieco bardziej. Uogólniając, na przodzie silnika znajduje się ogromnych rozmiarów wentylator. To jego łopaty widzimy, jeśli czekamy na nasz samolot i zerkamy na silnik. W przeciwieństwie do samolotów śmigłowych wentylator nie znajduje się w otwartym powietrzu, ale jest zabudowany w gondoli silnikowej. Pozwala to precyzyjnie wpływać na przepływ powietrza „zagarnianego” przez silnikowe są również wentylem bezpieczeństwa. Dzięki nim łopatka wentylatora lub kompresora, która postanowiła opuścić silnik i udać się w daleki świat, nie trafi w nasze okno, ale zostanie wyłapana. Najpierw sprężanieGdy łopaty wentylatora przepchną już powietrze dalej, to trafia ono na dwa tory. W jednym opływa rdzeń silnika, a w drugim podlega kompresji. Wirniki kompresorów ułożone są jeden za drugim i stopniowo powodują sprężanie wtłaczanego przez wentylator powietrza. W silniku może być więcej niż jedna sekcja kompresji. Składa się ona z ruchomych łopatek oraz ze stałych strumienic kierujących powietrze i „prostujących” zawirowania. By nadać całości większej efektywności, w nowoczesnych silnikach odrzutowych mamy do czynienia z sekcją kompresji niskiego i wysokiego powietrze zostanie już sprężone do zadanej wartości, trafia do komory spalania, gdzie jest mieszane z paliwem. Powstaje łatwopalna mieszanka, która po podpaleniu czymś na kształt świec znanych z samochodów osobowych, generuje ogromną energię, która jest wykorzystywana do napędzania turbin. Te również ustawione są w kilku szeregach i mają różne zadania. Część, jak już wspomniano, napędza wirniki kompresora, by ten zapewniał sprężone powietrze, a część odpowiada za obroty nietrudno się domyślić, w wyniku spalania gazów powstaje ogromna temperatura, która działa na łopatki turbin. Te, by się nie rozlecieć, wymagają specjalnego chłodzenia. Ku wylotowiNa samym końcu silnika znajduje się stożek wylotowy, który odpowiada za mieszanie i przyspieszanie gazów wylotowych, by poprawić ich efektywność. Jak pamiętamy w silnikach dwuprzepływowych powietrze napędzone przez przedni wentylator opływa rdzeń i na końcu miesza się z gorącymi gazami wydobywającymi się z turbiny. To on powodują największy hałas. Dzięki temu, że opływa, niejako otula je, zimne, wolniejsze powietrze następuje znaczący spadek hałasu, jaki generuje silnik silniku wojskowym, przeznaczonym do myśliwców montowana jest też sekcja dopalania, o której również wspominaliśmy wcześniej. Tutaj nie ma zbyt wielkiej filozofii. Naukowcy ustalili, że jeśli dolejemy benzyny do ognia, to będzie jeszcze większe bum 😉. Zatem w dopalaczach montuje się dysze wtryskiwaczy dodatkowej dawki paliwa, które ulega zapłonowi i nadaje maszynie jeszcze większą prędkość. Jak nietrudno się domyślić bezceremonialne lanie paliwa do „wydechu” nie jest ekonomiczne i stąd dopalacza używa się w wymagających sytuacjach takich jak start alarmowy mocno obciążonym samolotem czy też walka powietrzna. To między innymi silniki J58 sprawiały, że Blackbird był w swoim czasie niedoścignioną dla Rosjan maszyną szpiegowską. Źródło: USAF / Tech. Sgt. Michael Haggerty Najszybszy samolot wojskowy z silnikiem odrzutowymTutaj nieprzerwanie palme pierwszeństwa dzierży SR-71A Blackbird, czyli amerykański samolot, który zastąpił słynne U-2 i zamiast pułapem operacyjnym walczył z Rosjanami prędkością. By powstała tak doskonała maszyna, konieczna była praca wielu wybitnych specjalistów z dziedziny lotnictwa, a mocną ekipę w tym gronie stanowili spece od silników. To oni opracowali jednostki napędowe Pratt & Whitney J58. Dzięki nim SR-71 osiągnął prędkość maksymalną wynoszącą 3500 kilometrów na godzinę, czyli ponad trzykrotnie szybciej niż prędkość dźwięku. Najszybszy samolot pasażerski z silnikiem odrzutowymTutaj sprawa jest nieco bardziej skomplikowana. Wszyscy wiemy, że francusko-brytyjski Concorde i rosyjski tupolew Tu-144 latały z prędkością ponaddźwiękową. I choć samoloty te zostały jednak już tylko ozdobą muzeów, to rekord prędkości nadal jest w rękach rosyjskich. Tu-144 rozpędził się do prędkości Mach (2,430 km/h). Concorde nigdy tak szybko nie poleciał i nie ma znaczenia, że w ogólnym rozrachunku był maszyną znacznie lepszą. Koniec końców był natomiast szukacie najszybszej cywilnej maszynki do latania aktualnie będącej w produkcji, to palmę pierwszeństwa od roku 2010 dzierży Gulfstream G650. Pilotom w locie poziomym udało się osiągnąć prędkość przelotową na poziomie Mach PodsumowanieSilniki odrzutowe to małe cuda inżynierii, ale mają swoje ograniczenia. Do lotów w kosmos musimy korzystać z rakiet, a jeśli chcemy polecieć jeszcze szybciej niż SR-71 to sięgamy również po rakiety, albo po silniki kojarzone szerszej publiczności z bronią hipersoniczną. Są to jeszcze większe cudeńka techniki zwane z angielskiego Scramjet (Supersonic Combustion Ramjet), czyli Są to silniki strumieniowe z naddźwiękową komorą spalania będące odmianą silników ramjet, czyli silników strumieniowych bez ruchomych części (w dużym uproszczeniu).Jak widać, ludzkość ma jeszcze w zanadrzu parę sztuczek silnikowych, ale prędkości osiągane przez takie maszyny są już trudne do zniesienia dla ludzi. Można się spodziewać, że znajdą zastosowanie w bezzałogowych aparatach bojowych, których era już się zaczęła, a teraz zbliżamy się małymi krokami do kolejnego przełomu lotniczego. Źródła:
Wprawdzie po drodze jest jeszcze kilka elementów, takich jak sprzęgło i skrzynia biegów, ale to już materiał na inną opowieść. Natomiast silnik elektryczny jest zasilany prądem, który pochodzi z baterii lub gniazdka. Płynie on do tzw. szczotek, z nich do komutatora zamontowanego na wirniku umieszczonym między dwoma magnesami stojanu. Przegląd lotu REVERSE RUDDER H-King Hawker Hurricane Mk IIB (PNF) 750mm (30 \ ") $ \ begingroup $ Prowadziłem badania nad silnikami odrzutowymi i wydają się one naprawdę trudne do zrozumienia. Czy zatem ktoś może to wyjaśnić w prosty sposób? Na silniku F-15 Eagle świeci dopalacz, źródło: Wikimedia. Jak to zrobić silniki odrzutowe praca? $ \ endgroup $ 2 $ \ begingroup $ Muszę powiedzieć, że ten silnik nie wydaje się być zbyt dobrze powiązany. Wydaje mi się, że te dwa dłuższe druty odciągowe i krótka śruba rzymska (z każdej strony) są mocniejsze niż wyglądają. $ \ endgroup $ $ \ begingroup $ Porównaj z ... $ \ endgroup $ $ \ begingroup $ Najprościej mówiąc: Ssać - Powietrze jest zasysane do turbiny. Ze względów wydajnościowych większość samolotów przepuszcza część tego po prostu przez zewnętrzną część wentylatora, a nie przez cały silnik. Ściskać - Sprężarka ściska to powietrze do wysokiego ciśnienia. Pomaga to w zapłonie. Bum - Paliwo jest wtryskiwane i zapalane. Gdy powietrze staje się gorące, rozszerza się. Cios - Gorące powietrze napędza niskociśnieniową turbinę (napędza cały wał utrzymujący razem silnik), zasysając nowe powietrze i samo jest wydmuchiwane z tyłu. $ \ endgroup $ 7 3 $ \ begingroup $ Na stronie NASA K-12 poświęconej silnikom odrzutowym znajduje się świetny interaktywny animowany GIF. $ \ endgroup $ 3 $ \ begingroup $ jeśli część powietrza omija silnik, nazywa się to silnikiem turbowentylatorowym. ale to jest semantyka $ \ endgroup $ 3 $ \ begingroup $ część "ssąca" działa tylko przy starcie / na ziemi. Podczas rejsu jest ruch samolotu powietrze, które powoduje, że powietrze dostaje się do silnika. Wentylator skutecznie wypycha powietrze do tyłu. $ \ endgroup $ $ \ begingroup $ @ratchetfreak Zawsze słyszałem, że silnik odrzutowy typu „low-bypass” to nadal silnik turboodrzutowy, a nie turbowentylator, ale inne definicje to obalają. Niektóre wyspecjalizowane silniki, takie jak silniki SR-71, miały zmienne obejście; były to technicznie silniki turboodrzutowe do Mach 2, następnie obejścia były otwierane i powietrze przepływało bezpośrednio do dopalaczy. $ \ endgroup $ 2 $ \ begingroup $ @KeithS Federico ma rację, silniki „zasysają” powietrze tylko wtedy, gdy nie pracują lub pracują bardzo wolno. Myślę, że Federico nie komentował tego, że aby zassać powietrze, ciśnienie na wlocie musi być niższe niż ciśnienie otoczenia. Oznacza to, że na wlocie występuje gradient ciśnienia od wysokiego ciśnienia otoczenia do niskiego ciśnienia statycznego. Podczas lotu rejsowego już tak nie jest, wtedy gradient ciśnienia statycznego otoczenia ulega odwróceniu. $ \ endgroup $ $ \ begingroup $ Użytkownicy zadający sobie pytanie: jak działa silnik odrzutowy? (wyjaśnienie dla osób niezwiązanych z lotnictwem) są teraz przekierowywane tutaj. Ta ilustrująca odpowiedź jest zgodna z duchem pytania wstępnego, łatwa do odczytania dla osoby spoza lotnictwa bez poświęcania dokładności. Aby wywołać reakcję, rzuć czymś Działająca zasada fizyczna została zbadana przez Izaaka Newtona i jest znana jako zasada reakcji (lub bardziej wyrazista trzecia zasada dynamiki Newtona). Ruch reakcji jest odpowiedzią na inny ruch. W wielu przypadkach, w tym w silniku odrzutowym, odbywa się to poprzez poruszanie czymś ciężkim z najwyższą możliwą prędkością. Chociaż reakcja wydaje się magiczna, jest to coś, czego doświadcza się non stop w życiu codziennym, bez zwracania na to uwagi. Wynik takiego doświadczenia możemy sobie łatwo wyobrazić: Weź małą łódkę i duży kamień, powiedzmy 20 kg. Łódź jest początkowo nieruchoma na wodzie. Rzuć kamień gwałtownie za łódź. (Zastrzeżenie prawne: nie próbuj tego w domu, przeprowadziłem ten eksperyment dawno temu z przeszkolonym personelem) Gdy tylko kamień nabiera prędkości do tyłu, łódź nabiera prędkości do przodu. Oba obiekty przestają przyspieszać, gdy kamień opuści ręce rzucającego. Uwaga na temat prędkości: W eksperymencie z łodzią, jeśli chcemy rzucić kamieniem bez poruszania łodzią, instynktownie przesuniemy ją bardzo, bardzo powoli, aż znajdzie się nad wodą, a następnie pozwolimy jej wpaść do wody bez pchania i zadziała. Wiemy również, co się dzieje, gdy duże działo rzuca pociskiem 500 g z prędkością dźwięku: Występuje ogromna reakcja pistoletu, mimo że broń jest cięższa niż nasza łódź i tarcie o ziemię powinno uniemożliwić jej poruszenie. Poczuj reakcję intuicyjnie: Kiedy pchamy na skałę, w rzeczywistości używamy skały jako punktu podparcia i wywołując reakcję w ten sposób, pchamy skałę, poruszamy łodzią. Jednak aby kontynuować wytwarzanie ciągu, musimy coraz mocniej naciskać na skałę, ponieważ sama skała przyspiesza z powodu siły, którą do niej przykładamy. Jeśli tylko poruszamy rękami z prędkością skały, nie pchamy, ruch skały jest niezmieniony dzięki drugiej zasadzie ruchu, nie ma impulsu, a więc nie ma zmiany pędu, a łódź po prostu zaczyna zwalniać w dół z powodu oporu (z wody), a także skały (oporu z powietrza). W rzeczywistości efekty siły, które wywołujemy popychając (przyspieszając) skałę, są rozdzielane między skałę a łódź zgodnie ze stosunkiem mas. Największa masa otrzymuje najmniejszą zmianę. Reakcja na wyrzucanie powietrza Rzucanie kamieniami jest oczywiście niepraktyczne w przypadku silnika. Ale możemy rzucić powietrze, jak w balonie, znowu coś bardzo znajomego: Ta zasada wyrzucania powietrza w celu wywołania reakcji była znana od starożytności z eolipile. To był wczesny silnik parowy. Powietrze było wyrzucane przez styczne otwory na końcach rur. Źródło Silnik odrzutowy działa w ten sam sposób, wyrzucając powietrze za burtę, w dużych ilościach iz bardzo dużą prędkością. W porównaniu do eksperymentu z łodzią wymieniliśmy: Kamień w powietrzu. Ponieważ powietrze jest znacznie mniej gęste niż skała, musimy skoncentrować dużo powietrza, aby uzyskać te same efekty. Mięśnie rąk poprzez spalanie paliwa. Spalanie dostarcza gazy o dużej prędkości w wyniku rozszerzania się gazu w wysokiej temperaturze. Im więcej paliwa, tym wyższa prędkość gazów. Spalanie dużej ilości paliwa wymaga dużej ilości powietrza, potrzebujemy już powietrza w dużej ilości, więc nie stanowi to problemu. Jednak powietrze nie dostanie się w dużej ilości do silnika, w pewnym momencie powietrze już obecne w silniku zapobiega przedostawaniu się większej ilości powietrza. Podczas lotu ciśnienie powietrza w baranie może zwiększyć ilość powietrza w silniku, ale to nie wystarczy. Rozwiązaniem jest użycie kompresora do walki z ciśnieniem powietrza znajdującego się już w silniku i wepchnięcie w dużych samolotach około jednej tony powietrza na sekundę. To tylko 50 razy więcej niż nasz kamień, ale prędkość spalin zdecydowanie nie jest taka sama: około 1000 km / h. Jak zbieramy dużo powietrza i wyrzucamy je z dużą prędkością? Mamy wszystkie składniki potrzebne do wykonania silnika odrzutowego, który składa się z trzech sekcji (dla uproszczenia spójrzmy na wczesny silnik turboodrzutowy, odnieś się do tego pytania dla zwykłego turbofan): Powietrze dostaje się do silnika od przodu i jest sprężane przez pompę (zwaną sprężarką) w celu zwiększenia dostępnej ilości. Sprężone powietrze jest mieszane z paliwem i zapalane. Do spalania paliwa potrzebne jest powietrze (tlen). Podczas spalania mieszanka osiąga bardzo wysoką temperaturę i rozszerza się pod wpływem ciepła, dokładnie tak, jak para wodna rozpręża się w szybkowarze lub eolipile. Przed wyrzuceniem niewielka część energii gorących gazów jest wykorzystywana do obracania turbiny (podobnie jak wiatr obraca turbinę wiatrową). Ten ruch obrotowy jest przenoszony na kompresor, który widzieliśmy na początku. Do uruchomienia kompresora na początku używa się rozrusznika, jak w samochodzie. Gorące gazy są wyrzucane do tyłu, co powoduje reakcję silnika do przodu. W związku z tym elementy silnika odrzutowego to: Sprężarka wtłaczająca powietrze do silnika. Komora spalania do tworzenia szybko rozszerzających się gazów z powietrza i paliwa. Turbina napędzająca sprężarkę. Układ wydechowy uwalniający gazy w zoptymalizowany sposób w celu zwiększenia wydajności. Źródło $ \ endgroup $ 1 $ \ begingroup $ Nie mogę uwierzyć, że nigdy wcześniej nie widziałem tej odpowiedzi, ale +1 dla mężczyzny na łodzi! $ \ endgroup $ $ \ begingroup $ Turbina gazowa, kompresor, komora spalania i turbina składają się z trzech podstawowych części. Powietrze jest sprężane przez kompresor, podgrzewane przez komorę spalania, a ogrzane powietrze zasila turbinę. Turbina z kolei zasila sprężarkę. Kluczem jest to, że ogrzewanie w komorze spalania powoduje rozszerzenie powietrza. Oznacza to, że praca, jaką mogą wykonać gazy (powietrze i produkty spalania) opuszczające komorę spalania pod ciśnieniem, jest większa niż praca potrzebna do wtłoczenia wchodzącego powietrza (i paliwa) do komory spalania. Dostępną energię w spalinach można wykorzystać na różne sposoby. Najprostszy to turboodrzutowy, strumień gorących gazów wydostający się z tyłu silnika bezpośrednio zapewnia napęd do przodu. Alternatywnie możemy wychwycić więcej energii ze spalin za pomocą turbiny i użyć jej do napędzania wentylatora, co skutkuje turbowentylatorem. Lub możemy zaprojektować naszą turbinę tak, aby wychwytywała większość użytecznej energii ze spalin i kierowała ją do wału, który może być używany do napędzania wszelkiego rodzaju rzeczy. $ \ endgroup $ $ \ begingroup $ Silnik odrzutowy to zbyt skomplikowany silnik strumieniowy z dodatkowymi turbinami, które pozwalają mu pracować przy niższych prędkościach. Strumień strumieniowy działa na zasadzie zapłonu sprężonego dopływu poprzez zmieszanie go z paliwem i wytworzenie iskry. $ \ endgroup $ 5 1 $ \ begingroup $ hmmm ... w silniku strumieniowym brakuje (ruchomych) stopni sprężarki, które są istotnym elementem silnika odrzutowego, nie ma też elementu obejściowego i przeważnie nie ma przepływu naddźwiękowego. Więc może bardziej odlegli krewni niż rodzeństwo? $ \ endgroup $ $ \ begingroup $ @yankeekilo, dlatego powiedziałem zbyt skomplikowane :) $ \ endgroup $ 7 $ \ begingroup $ LOL, ale wtedy baryłka paliwa i niektóre mecze mogą również twierdzić, że mają początek: D $ \ endgroup $ 3 $ \ begingroup $ Odrzutowiec strumieniowy prawie całkowicie różni się od silnika turboodrzutowego (i jego pochodnych). Brakuje w nim wentylatora / sprężarki i turbiny, więc porównanie ich byłoby tylko dezorientujące. Gdy masz już turboodrzutowy, możesz przyjrzeć się pulsatorom, strumieniom strumieniowym, scramjetom i innym, bardziej ezoterycznym formom. $ \ endgroup $ 1 $ \ begingroup $ Nie rozumiem, dlaczego mówisz, że jest „nadmiernie skomplikowany” - wygląda na to, że silnik odrzutowy jest dokładnie tak skomplikowany, jak musi być w zamierzonym środowisku operacyjnym. $ \ endgroup $ . 262 112 211 374 100 482 135 21